4.6 Article

Neural crest cell genes and the domestication syndrome: A comparative analysis of selection

Journal

PLOS ONE
Volume 17, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0263830

Keywords

-

Ask authors/readers for more resources

This study found that domesticated animals show higher levels of positive selection on neural crest cell genes compared to closely related wild species. The findings support the importance of these genes in the domestication syndrome.
Neural crest cell genes control the migration of neural crest cells to multiple parts of developing vertebrate embryos. A recent hypothesis posits that the domestication syndrome characteristic of domesticated animals is driven by selection for tameness acting on neural crest cell genes, particularly those affecting cell migration. This is posited to explain why this syndrome involves many disparate phenotypic effects. These effects can be connected to deficits in neural crest cell migration. This hypothesis predicts that patterns of selection on these neural crest cell genes will differ between domesticated species and related wild species. Specifically, it predicts higher levels of positive selection on these genes in domesticated species, relative to closely related wild species. Here we test this prediction in a comparative framework. We obtained DNA sequences from a public database (NCBI) for eleven key neural crest cell genes from a set of thirty domesticated vertebrates and matched close relatives that remain wild. We used the program Contrast-FEL in the software suite HyPhy to compare the number of sites under positive selection (as measured by non-synonymous to synonymous nucleotide substitution rates across codons) between these two types of taxa in a phylogenetic framework. We found that domesticated lineages showed a consistently higher level of positive selection on these key genes, relative to their closely related wild counterparts. In addition, we found support for relaxation of selection and purifying selection. We argue that this result is consistent with an important role for these genes in the domestication syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available