4.5 Article

Analysis of respiratory kinematics: a method to characterize breaths from motion signals

Journal

PHYSIOLOGICAL MEASUREMENT
Volume 43, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6579/ac4d1a

Keywords

diagnostic techniques; respiratory system; monitoring; physiologic; respiratory physiology; medical device design; work of breathing

Funding

  1. Center for Engineering in Medicine at the University of Virginia
  2. Clinician and Scholar Support (ClaSS) award from the Division of General, Geriatric, Palliative and Hospital Medicine at University of Virginia
  3. Ivy Foundation COVID-19 translational research fund

Ask authors/readers for more resources

This study developed a method to detect breaths using motion sensors, which can provide high-resolution respiratory rate signals by separating individual breaths. The relationship between respiratory kinematics and flow varies between individuals and exercise stages.
Objective. Breathing motion (respiratory kinematics) can be characterized by the interval and depth of each breath, and by magnitude-synchrony relationships between locations. Such characteristics and their breath-by-breath variability might be useful indicators of respiratory health. To enable breath-by-breath characterization of respiratory kinematics, we developed a method to detect breaths using motion sensors. Approach. In 34 volunteers who underwent maximal exercise testing, we used 8 motion sensors to record upper rib, lower rib and abdominal kinematics at 3 exercise stages (rest, lactate threshold and exhaustion). We recorded volumetric air flow signals using clinical exercise laboratory equipment and synchronized them with kinematic signals. Using instantaneous phase landmarks from the analytic representation of kinematic and flow signals, we identified individual breaths and derived respiratory rate (RR) signals at 1 Hz. To evaluate the fidelity of kinematics-derived RR, we calculated bias, limits of agreement, and cross-correlation coefficients (CCC) relative to flow-derived RR. To identify coupling between kinematics and flow, we calculated the Shannon entropy of the relative frequency with which flow landmarks were distributed over the phase of the kinematic cycle. Main Results. We found good agreement in the kinematics-derived and flow-derived RR signals [bias (95% limit of agreement) = 0.1 (+/- 7) breaths/minute; CCC median (IQR) = 0.80 (0.48-0.91)]. In individual signals, kinematics and flow were well-coupled (entropy 0.9-1.4 across sensors), but the relationship varied within (by exercise stage) and between individuals. The final result was that the flow landmarks did not consistently localize to any particular phase of the kinematic signals (entropy 2.2-3.0 across sensors). Significance. The Analysis of Respiratory Kinematics method can yield highly resolved respiratory rate signals by separating individual breaths. This method will facilitate characterization of clinically significant breathing motion patterns on a breath-by-breath basis. The relationship between respiratory kinematics and flow is much more complex than expected, varying between and within individuals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available