4.7 Article

Genome-wide discovery of DNA polymorphisms via resequencing of chickpea cultivars with contrasting response to drought stress

Journal

PHYSIOLOGIA PLANTARUM
Volume 174, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1111/ppl.13611

Keywords

-

Categories

Funding

  1. Department of Biotechnology, Government of India, New Delhi

Ask authors/readers for more resources

Drought stress affects plant growth and yield in chickpea. Genome diversity and selective alleles in different genotypes of crop plants may influence agronomic traits, including drought stress response. DNA polymorphisms were found in genes related to stress response, highlighting their importance in engineering drought tolerance in chickpea.
Drought stress limits plant growth, resulting in a significant yield loss in chickpea. The diversification in genome sequence and selective sweep of allele(s) in different genotypes of a crop plant may play an important role in the determination of agronomic traits, including drought stress response. We investigated, via whole genome resequencing, the DNA polymorphisms between two sets of chickpea genotypes with contrasting drought stress responses (3 drought-sensitive vs. 6 drought-tolerant). In total, 36,406 single nucleotide polymorphisms (SNPs) and 3407 insertions or deletions (InDels) differentiating drought-sensitive and drought-tolerant chickpea genotypes were identified. Interestingly, most (91%) of these DNA polymorphisms were located in chromosomes 1 and 4. The genes harboring DNA polymorphisms in their promoter and/or coding regions and exhibiting differential expression under control and/or drought stress conditions between/within the drought-sensitive and tolerant genotypes were found implicated in the stress response. Furthermore, we identified DNA polymorphisms within the cis-regulatory motifs in the promoter region of abiotic stress-related and QTL-associated genes, which might contribute to the differential expression of the candidate drought-responsive genes. In addition, we revealed the effect of nonsynonymous SNPs on mutational sensitivity and stability of the encoded proteins. Taken together, we identified DNA polymorphisms having relevance in drought stress response and revealed candidate genes to engineer drought tolerance in chickpea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available