4.6 Article

Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning

Journal

PHYSICS IN MEDICINE AND BIOLOGY
Volume 66, Issue 20, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6560/ac29cc

Keywords

RBE; OER; charged particle therapy

Funding

  1. Japan Society for the Promotion of Science (JSPS) [20K08123]
  2. Grants-in-Aid for Scientific Research [20K08123] Funding Source: KAKEN

Ask authors/readers for more resources

The study developed the OSMK model to incorporate oxygen-pressure dependent cell responses for estimating the biological effectiveness of radiation beams with different LET ranges on radioresistant tumors with oxygen-deficient regions.
For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keV mu m(-1). The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available