4.8 Article

Nature of Unconventional Pairing in the Kagome Superconductors AV3Sb5 (A = K, Rb, Cs)

Related references

Note: Only part of the references are listed.
Article Physics, Condensed Matter

Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy

Eric M. Kenney et al.

Summary: Muon spin relaxation and rotation measurements on the newly discovered kagome metal KV3Sb5 reveal a local field dominated by weak magnetic disorder associated with nuclear moments and showing a modest temperature dependence consistent with bulk magnetic susceptibility. The absence of evidence for V4+ local moments suggests that further studies are needed to understand the physics underlying the recently reported giant unconventional anomalous Hall effect in this material.

JOURNAL OF PHYSICS-CONDENSED MATTER (2021)

Article Materials Science, Multidisciplinary

Superconductivity in the Z2 kagome metal KV3Sb5

Brenden R. Ortiz et al.

Summary: This study reports the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal KV3Sb5, with further characterization of the normal state as a Z(2) topological metal using density functional theory (DFT) calculations. The presence of superconductivity in the AV(3)Sb(5) (A: K, Rb, Cs) family of compounds suggests a common feature across these materials, establishing them as a rich arena for studying the interplay between bulk superconductivity, topological surface states, and likely electronic density wave order in an exfoliable kagome lattice.

PHYSICAL REVIEW MATERIALS (2021)

Article Physics, Multidisciplinary

Superconductivity and Normal-State Properties of Kagome Metal RbV3Sb5 Single Crystals

Qiangwei Yin et al.

Summary: The discovery of superconductivity in RbV3Sb5 single crystals with V kagome lattice is reported, showing a superconducting transition at around 0.92K. Anomalies in properties at T* around 102-103K are observed, possibly linked to the formation of a charge ordering state. The drastic change and sign reversal of the Hall coefficient R-H at T* can be partially explained by enhanced mobility of hole-type carriers, with quantum oscillations indicating the presence of small Fermi surfaces with low effective mass.

CHINESE PHYSICS LETTERS (2021)

Article Multidisciplinary Sciences

Chiral flux phase in the Kagome superconductor AV3Sb5

Xilin Feng et al.

Summary: The study identifies a chiral flux phase in the quasi-2D Kagome superconductor AV(3)Sb(5), which has the lowest energy and exhibits 2 x 2 charge orders observed experimentally. This phase breaks time-reversal symmetry and displays anomalous Hall effect.

SCIENCE BULLETIN (2021)

Article Physics, Multidisciplinary

Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure

Xu Chen et al.

Summary: This study demonstrates the superconducting performance and high robustness of structural stability of kagome CsV3Sb5 under high pressures, revealing the variation of Tc under different pressures. Changes in electronic structure and electron-phonon coupling may be responsible for the pressure-induced reentrant superconductivity.

CHINESE PHYSICS LETTERS (2021)

Article Chemistry, Physical

Unconventional chiral charge order in kagome superconductor KV3Sb5

Yu-Xiao Jiang et al.

Summary: The study reveals an unconventional chiral charge order in KV3Sb5, a material with both a topological band structure and a superconducting ground state, using high-resolution scanning tunnelling microscopy. A 2 x 2 superlattice structure is observed in the experiment, along with an energy gap opening and charge modulation across the Fermi level.

NATURE MATERIALS (2021)

Article Physics, Multidisciplinary

Charge Density Waves and Electronic Properties of Superconducting Kagome Metals

Hengxin Tan et al.

Summary: In this study, electronic and structural properties of the CDW phase in Kagome metals AV(3)Sb(5) were investigated using first-principles calculations. It was found that the CDW phase features an inverse Star of David structure, inherits nontrivial topological band structure, and has weak electron-phonon coupling indicating unconventional pairing mechanism for superconductivity. These results provide essential insights into the superconductivity and topology in Kagome metals.

PHYSICAL REVIEW LETTERS (2021)

Article Physics, Multidisciplinary

Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure

K. Y. Chen et al.

Summary: The study reveals that the CDW transition in CsV3Sb5 decreases with pressure, with an unusual M-shaped double dome in the T-c(P) curve showing enhancement up to 8 K at 2 GPa. This indicates a strong competition between CDW-like order and SC, particularly in the intermediate pressure range of P-c1 <= P <= P-c2.

PHYSICAL REVIEW LETTERS (2021)

Article Physics, Multidisciplinary

Nodeless superconductivity in the kagome metal CsV3Sb5

Weiyin Duan et al.

Summary: CsV3Sb5 exhibits nodeless superconductivity consistent with two-gap s-wave superconductivity description, and is confirmed under multiple Fermi surfaces.

SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY (2021)

Article Physics, Multidisciplinary

Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A = Rb, Cs)

Haoxiang Li et al.

Summary: The study reveals the existence of a three-dimensional CDW in (Rb, Cs)V3Sb5 with a 2 x 2 x 2 superstructure. The CDW does not induce phonon anomalies at the CDW wave vector, but results in a novel Raman mode that quickly dampens into a broad continuum.

PHYSICAL REVIEW X (2021)

Article Materials Science, Multidisciplinary

Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A=K, Rb, Cs)

Yu-Ping Lin et al.

Summary: The study investigates the interaction between real and imaginary charge density waves at the Van Hove singularity on hexagonal lattices. It reveals the formation of 3Q complex orders and the rich phase diagram they constitute. The theoretical model offers transparent interpretations of experimental observations in kagome metals and sheds light on the nature of topological charge density waves.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Electronic correlations in the normal state of the kagome superconductor KV3Sb5

Jianzhou Zhao et al.

Summary: Recent studies have revealed fascinating physics in AV(3)Sb(5) materials, including charge density wave and superconducting states. Research on the KV3Sb5 family materials showed that they are good metals with weak local correlations. The findings suggest that the local correlation strength in these materials may be too weak to generate unconventional superconductivity.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5

Feng Du et al.

Summary: The study on KV3Sb5 reveals that with increasing pressure, the charge order progressively weakens and the superconducting transition temperature undergoes different degrees of changes. A superconducting dome is formed at around 10 GPa, while a smaller superconducting dome emerges beyond 10 GPa.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5

Zhuyi Zhang et al.

Summary: This study reports pressure-induced reemergence of superconductivity in CsV3Sb5, where the superconducting critical temperature initially increases and then decreases with pressure, forming a dome-shaped superconducting phase diagram. A new superconducting state emerges with further compression above 16.5 GPa, with T-c reaching a second maximum around 5.0 K and remaining stable up to 47.9 GPa. The reemergence of superconductivity in V-based superconductor is suggested to be attributed to a pressure-induced Lifshitz transition, supported by high-pressure synchrotron x-ray-diffraction measurements showing the stability of the pristine hexagonal phase up to 43.1 GPa.

PHYSICAL REVIEW B (2021)

Article Multidisciplinary Sciences

Nematicity with a twist: Rotational symmetry breaking in a moire superlattice

Rafael M. Fernandes et al.

SCIENCE ADVANCES (2020)

Article Multidisciplinary Sciences

Quantum-limit Chern topological magnetism in TbMn6Sn6

Jia-Xin Yin et al.

NATURE (2020)

Article Physics, Multidisciplinary

Model Construction and a Possibility of Cupratelike Pairing in a New d9 Nickelate Superconductor (Nd,Sr)NiO2

Hirofumi Sakakibara et al.

PHYSICAL REVIEW LETTERS (2020)

Article Multidisciplinary Sciences

Turbulent hydrodynamics in strongly correlated Kagome metals

Domenico Di Sante et al.

NATURE COMMUNICATIONS (2020)

Article Physics, Multidisciplinary

CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State

Brenden R. Ortiz et al.

PHYSICAL REVIEW LETTERS (2020)

Article Physics, Multidisciplinary

Spin-Orbit-Induced Topological Flat Bands in Line and Split Graphs of Bipartite Lattices

Da-Shuai Ma et al.

PHYSICAL REVIEW LETTERS (2020)

Article Materials Science, Multidisciplinary

Harmonic fingerprint of unconventional superconductivity in twisted bilayer graphene

Xianxin Wu et al.

PHYSICAL REVIEW B (2020)

Article Materials Science, Multidisciplinary

New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5

Brenden R. Ortiz et al.

PHYSICAL REVIEW MATERIALS (2019)

Article Physics, Multidisciplinary

Colloquium: Herbertsmithite and the search for the quantum spin liquid

M. R. Norman

REVIEWS OF MODERN PHYSICS (2016)

Article Materials Science, Multidisciplinary

Band flatness optimization through complex analysis

Ching Hua Lee et al.

PHYSICAL REVIEW B (2016)

Article Materials Science, Multidisciplinary

Triplet pz-wave pairing in quasi-one-dimensional A2Cr3As3 superconductors (A = K, Rb, Cs)

Xianxin Wu et al.

PHYSICAL REVIEW B (2015)

Article Physics, Multidisciplinary

g-wave pairing in BiS2 superconductors

Xianxin Wu et al.

Article Multidisciplinary Sciences

Theoretical prediction of a strongly correlated Dirac metal

I. I. Mazin et al.

NATURE COMMUNICATIONS (2014)

Article Astronomy & Astrophysics

Fractional quantum Hall physics in topological flat bands

Siddharth A. Parameswaran et al.

COMPTES RENDUS PHYSIQUE (2013)

Article Materials Science, Multidisciplinary

Competing electronic orders on kagome lattices at van Hove filling

Wan-Sheng Wang et al.

PHYSICAL REVIEW B (2013)

Article Physics, Multidisciplinary

Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model

Maximilian L. Kiesel et al.

PHYSICAL REVIEW LETTERS (2013)

Article Materials Science, Multidisciplinary

Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice

Shun-Li Yu et al.

PHYSICAL REVIEW B (2012)

Article Materials Science, Multidisciplinary

Sublattice interference in the kagome Hubbard model

Maximilian L. Kiesel et al.

PHYSICAL REVIEW B (2012)

Article Materials Science, Multidisciplinary

Types of topological surface states in nodal noncentrosymmetric superconductors

Andreas P. Schnyder et al.

PHYSICAL REVIEW B (2012)

Article Materials Science, Multidisciplinary

Topology of Andreev bound states with flat dispersion

Masatoshi Sato et al.

PHYSICAL REVIEW B (2011)

Article Materials Science, Multidisciplinary

Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors

Masatoshi Sato et al.

PHYSICAL REVIEW B (2010)

Article Physics, Multidisciplinary

Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides

S. Graser et al.

NEW JOURNAL OF PHYSICS (2009)

Article Physics, Multidisciplinary

Density waves and cooper pairing on the honeycomb lattice

Carsten Honerkamp

PHYSICAL REVIEW LETTERS (2008)

Article Physics, Multidisciplinary

Kinetic ferromagnetism on a kagome lattice

F. Pollmann et al.

PHYSICAL REVIEW LETTERS (2008)

Article Materials Science, Multidisciplinary

Pairing symmetry in a two-orbital Hubbard model on a square lattice

Katsunori Kubo

PHYSICAL REVIEW B (2007)

Article Materials Science, Multidisciplinary

Frequency-dependent local interactions and low-energy effective models from electronic structure calculations

F Aryasetiawan et al.

PHYSICAL REVIEW B (2004)

Article Physics, Multidisciplinary

Non-abelian statistics of half-quantum vortices in p-wave superconductors

DA Ivanov

PHYSICAL REVIEW LETTERS (2001)

Article Materials Science, Multidisciplinary

Density-wave states of nonzero angular momentum

C Nayak

PHYSICAL REVIEW B (2000)