4.6 Article

Phase separation mechanism for a unified understanding of dissipative pattern formation in a Liesegang system

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 24, Issue 4, Pages 2088-2094

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp05184a

Keywords

-

Funding

  1. JSPS KAKENHI [19H02668]
  2. JSPS [19J23178]
  3. National Research, Development and Innovation Office of Hungary [K131425]
  4. BME-Nanotechnology FIKP grant of EMMI [BME FIKP-NAT]
  5. Grants-in-Aid for Scientific Research [19H02668, 19J23178] Funding Source: KAKEN

Ask authors/readers for more resources

Dissipative patterns with solid-phase transitions are common in nature, however, the unified understanding of the mechanisms behind such pattern formation is lacking. The Liesegang pattern is a typical model that describes dissipative pattern formation, but the conventional mechanism lacks practicality. This study demonstrates a novel experimental system based on phase transition and separation mechanisms, showing that pattern formation is driven by a macroscopic phase-separation mechanism and does not require nucleation. The findings suggest that the chemical Liesegang system can be applied as a practical model for understanding similar dissipative pattern formation mechanisms.
Dissipative patterns with solid-phase transitions are ubiquitous in nature. Despite their ubiquitous nature, there is no unified understanding of the non-equilibrium self-assembly mechanisms of such pattern formation. The Liesegang pattern (LP) is a typical model that has the potential to describe dissipative pattern formation arising from the nonlinear coupling of directional mass transport of water-soluble substances into a porous media with their solid-phase transition processes. However, the conventional mechanism in a Liesegang system lacks practicality because most of the existing studies have focused only on the transition mechanism of nucleation from the molecular to the solid state. In this study, we demonstrate a novel experimental system based on a phase transition and separation mechanism that does not require nucleation, namely, the pH-induced aggregation of gold nanoparticles modified with 11-mercaptoundecanoic acid (MUA-Au NPs) by H+ diffusion in a solid hydrogel. Combined experiments and numerical simulations reveal that pattern formation is driven by the macroscopic phase-separation mechanism. Furthermore, the pattern periodicity obtained from both experiments and simulations follows the classical spacing law of LP, namely, the LP morphology is determined without the need for nucleation. Therefore, we can show that the formation of LPs can be described in a unified mechanism, regardless of whether nucleation occurs. This finding opens the possibility that the chemical Liesegang system can be applied as a practical model for proving the mechanisms of similar dissipative pattern formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available