4.4 Review

Perspectives on Cyclobutane Pyrimidine Dimers-Rise of the Dark Dimers†

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 98, Issue 3, Pages 609-616

Publisher

WILEY
DOI: 10.1111/php.13551

Keywords

-

Ask authors/readers for more resources

Dark cyclobutane pyrimidine dimers (dCPD) are formed post UV-exposure and can be prevented by antioxidants, with further research needed on their spectral dependence and biological properties.
Some early reports demonstrate that levels of cyclobutane pyrimidine dimers (CPD) may increase after UVR exposure had ended, although these observations were treated as artifacts. More recently, it has been shown unequivocally that CPD formation does occur post-irradiation, with maximal levels occurring after about 2-3 h. These lesions have been termed dark CPD (dCPD). Subsequent studies have confirmed their presence in vitro, in mouse models and in human skin in vivo. Melanin carbonyls have a role in the formation of dCPD, but they have also been observed in amelanotic systems, indicating other, unknown process(es) exist. In both cases, the formation of dCPD can be prevented by the presence of certain antioxidants. We lack data on the spectral dependence of dCPD, but it is unlikely to be the same as for incident CPD (iCPD), which are formed only during irradiation. There is evidence that iCPD and dCPD may have different repair kinetics, although this remains to be elucidated. It is also unknown whether iCPD and dCPD have different biological properties. The formation of dCPD in human skin in vivo has implications for post solar exposure photoprotection, and skin carcinogenesis, with a need for this to be investigated further.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available