4.7 Review

p53: A double-edged sword in tumor ferroptosis

Journal

PHARMACOLOGICAL RESEARCH
Volume 177, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2021.106013

Keywords

Ferroptosis; P53; Sensitivity; Metabolism; Tumor suppressor

Funding

  1. Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine [ZYYCXTD-D-202005]

Ask authors/readers for more resources

This review discusses the role of the p53 gene in regulating ferroptosis, primarily through influencing metabolic networks and signaling pathways that affect tumor cell sensitivity to ferroptosis. This has important implications for further understanding the role of p53 in tumor ferroptosis and developing new strategies for cancer treatment.
Ferroptosis is a type of lipid peroxidation-induced cell death that can be regulated in various ways, from changing the activity of antioxidant enzymes to the levels of transcription factors. The p53 tumor suppressor gene is the guardian of the genome and is involved in controlling cell survival and division under various pressures. In addition to its effects on apoptosis, autophagy, and cell cycle, p53, through the way of transcription dependent or independent two-way, also regulates the biological processes of tumor cell sensitivity to ferroptosis, including the metabolism of amino acids, nicotinamide adenine dinucleotide phosphate, and lipid peroxidation, as well as the biosynthesis of glutathione, phospholipids, NADPH and coenzyme Q10. As reviewed here, we summarized the metabolic network of p53 and its signaling pathway in regulating ferroptosis and elucidated possible factors and potential clinical application of p53 regulating ferroptosis. This review will provide a basis for further understanding the role of p53 in tumor ferroptosis and new strategies for cancer therapeutic avenues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available