4.7 Article

Random vector functional link network for short-term electricity load demand forecasting

Journal

INFORMATION SCIENCES
Volume 367, Issue -, Pages 1078-1093

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2015.11.039

Keywords

Random weights; Random vector functional link; Neural network; Time series forecasting; Electricity load demand forecasting

Funding

  1. Singapore National Research Foundation (NRF) under Campus for Research Excellence And Technological Enterprise (CREATE) program
  2. Cambridge Advanced Research Centre in Energy Efficiency in Singapore (CARES) [C4T]
  3. Clean Energy Program Office (CEPO)

Ask authors/readers for more resources

Short-term electricity load forecasting plays an important role in the energy market as accurate forecasting is beneficial for power dispatching, unit commitment, fuel allocation and so on. This paper reviews a few single hidden layer network configurations with random weights (RWSLFN). The RWSLFN was extended to eight variants based on the presence or absence of input layer bias, hidden layer bias and direct input-output connections. In order to avoid mapping the weighted inputs into the saturation region of the enhancement nodes' activation function and to suppress the outliers in the input data, a quantile scaling algorithm to re-distribute the randomly weighted inputs is proposed. The eight variations of RWSLFN are assessed using six generic time series datasets and 12 load demand time series datasets. The result shows that the RWSLFNs with direct input-output connections (known as the random vector functional link network or RVFL network) have statistically significantly better performance than the RWSLFN configurations without direct input-output connections, possibly due to the fact that the direct input-output connections in the RVFL network emulate the time delayed finite impulse response (FIR) filter. However the RVFL network has simpler training and higher accuracy than the FIR based two stage neural network. The RVFL network is also compared with some reported forecasting methods. The RVFL network overall outperforms the non-ensemble methods, namely the persistence method, seasonal autoregressive integrated moving average (sARIMA), artificial neural network (ANN). In addition, the testing time of the RVFL network is the shortest while the training time is comparable to the other reported methods. Finally, possible future research directions are pointed out. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available