4.6 Article

Twist and strain tuning of third harmonic generation in glass nanostrand with two sub-wavelength hollow channels

Journal

OPTICS LETTERS
Volume 46, Issue 20, Pages 5288-5291

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.443378

Keywords

-

Categories

Funding

  1. Max-Planck-Gesellschaft

Ask authors/readers for more resources

The study presents a design for efficiently generating entangled photon triplets by adjusting gas pressure, axial strain, and mechanical twist. The nanostrand of glass with two hollow channels enhances the nonlinear overlap between the fundamental and third harmonic modal fields.
A major challenge in third harmonic generation and its converse, parametric down-conversion, is how to arrange phase matching between signals at omega and 3 omega while maintaining a high nonlinear overlap. In this Letter, we present a design consisting of a nanostrand of glass with two hollow channels. The fundamental and third harmonic modal fields, enhanced in the region between the channels, have high nonlinear overlap, while the phase-matching wavelength can be coarse-tuned by gas pressure and fine-tuned by axial strain and mechanical twist, which, remarkably, have opposite effects. The ability to adjust the phase-matching condition may facilitate efficient generation of entangled photon triplets. (C) 2021 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available