4.7 Article

Deep learning approach for active classification of electrocardiogram signals

Journal

INFORMATION SCIENCES
Volume 345, Issue -, Pages 340-354

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2016.01.082

Keywords

ECG signal classification; Feature learning; Denoising autoencoder (DAE); Deep neural network (DNN); Active learning (AL)

Funding

  1. Distinguished Scientist Fellowship Program at King Saud University

Ask authors/readers for more resources

In this paper, we propose a novel approach based on deep learning for active classification of electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint. After this feature learning phase, we add a softmax regression layer on the top of the resulting hidden representation layer yielding the so-called deep neural network (DNN). During the interaction phase, we allow the expert at each iteration to label the most relevant and uncertain ECG beats in the test record, which are then used for updating the DNN weights. As ranking criteria, the method relies on the DNN posterior probabilities to associate confidence measures such as entropy and Breaking-Ties (BT) to each test beat in the ECG record under analysis. In the experiments, we validate the method on the well-known MIT-BIH arrhythmia database as well as two other databases called INCART, and SVDB, respectively. Furthermore, we follow the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for class labeling and results presentation. The results obtained show that the newly proposed approach provides significant accuracy improvements with less expert interaction and faster online retraining compared to state-of-the-art methods. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available