4.7 Article

Development of a coupling algorithm for fluid-structure interaction analysis of submerged aquaculture nets

Journal

OCEAN ENGINEERING
Volume 243, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2021.110208

Keywords

Dynamic porous media model; Screen model; Fluid-structure interaction; Finite volume method; Finite element method; Aquaculture nets

Ask authors/readers for more resources

This study implemented a coupling algorithm between OpenFOAM and Code_Aster for fluid-structure interaction analysis of submerged nets. The algorithm simplifies model preparation and improves the accuracy of structural responses. Experimental results show good agreement between numerical results obtained from the coupling algorithm and published experimental data.
A coupling algorithm between two open-source numerical toolboxes, i.e., OpenFOAM and Code_Aster, is implemented for fluid-structure interaction analysis of submerged nets. This algorithm is developed to handle the wake effects of thin, flexible and highly permeable structures with complex geometries. Compared to previous approaches, the present algorithm simplifies the procedures of the model preparation by removing additional data-fitting processes for porous coefficients, and improves the accuracy of structural responses by employing a fluid solver to calculate the flow field and a superior Screen model to calculate the hydrodynamic forces. The coupling algorithm is comprehensively described and validated with published experiments for both fixed and flexible nets. Different solidities, inflow angles, incoming velocities and dimensions of nets are also considered. The comparisons of flow velocity in the wake, deformation of flexible nets and drag force on the full-scale fish cage show that the numerical results obtained from the present coupling algorithm are in good agreement with published experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available