4.7 Review

Scale effects and full-scale ship hydrodynamics: A review

Journal

OCEAN ENGINEERING
Volume 245, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2021.110496

Keywords

Ship hydrodynamics; Scale effects; Full-scale ship hydrodynamics; CFD

Ask authors/readers for more resources

This review article explores the problems with extrapolation procedures in naval architecture, the attempts to correct them and the current efforts to eliminate the need for extrapolation through full-scale Computational Fluid Dynamics. Despite progress, there are still bottlenecks in terms of data availability and computational power.
Historically, the field of naval architecture has relied on a combination of model testing and scaling laws, known as extrapolation procedures, to predict full-scale power requirements. Numerous problems with extrapolation procedures were identified almost as soon as they were proposed, but since there were no alternative scaling laws their use persisted. This review article explores the cause of these uncertainties, the attempts to circumvent or correct them, and the current efforts to reduce and even eliminate the need for extrapolation of ship resistance through the use of full-scale Computational Fluid Dynamics. We find that while there are a number of developments and accomplishments in achieving robust and reliable full-scale numerical simulation, the research community is not yet ready to replace experimentation and extrapolation. The principal bottlenecks are the availability of open full-scale data, including ship geometries, and computational power to predict full-scale flows with the necessary accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available