4.7 Article

Effect of excited state lasing on the chaotic dynamics of spin QD-VCSELs

Journal

NONLINEAR DYNAMICS
Volume 106, Issue 4, Pages 3637-3646

Publisher

SPRINGER
DOI: 10.1007/s11071-021-06955-6

Keywords

Semiconductor lasers; Quantum-dot spin VCSELs; Chaos; Nonlinear dynamics; Largest Lyapunov exponent; Neuromorphic photonics; Reservoir computing

Funding

  1. University of Patras, Basic Research Program 'K Karatheodori' [56890000]

Ask authors/readers for more resources

This study numerically investigates the chaotic dynamics of optically pumped quantum-dot spin vertically coupled surface emitting lasers, considering both ground state and excited state energy levels. The intensity dynamics of excited state and ground state transitions are studied through the elaboration of a spin-flip model, and it is found that although they exhibit similar nonlinear dynamics, they are weakly correlated, which can be utilized for implementing various functionalities.
We investigate numerically the chaotic dynamics of optically pumped quantum-dot (QD) spin vertically coupled surface emitting lasers (VCSELs) accounting for both ground state (GS) and excited state (ES) energy levels through the elaboration of the spin-flip model (SFM). The intensity dynamics associated with ES and GS transitions are studied by means of the largest Lyapunov exponent (LLE) and stability maps in terms of operational parameters (pump ellipticity and pump intensity), as well as material parameters (ES-GS intraband relaxation rate, spin relaxation rate and birefringence), are produced. It is established that although both ES and GS dynamics exhibit the same kind of nonlinear dynamics for a given set of control parameters, the ES and GS dynamics are weakly uncorrelated. This can be the basis for the realization of various functionalities including reservoir computing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available