4.6 Article

Generalization techniques of neural networks for fluid flow estimation

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 34, Issue 5, Pages 3647-3669

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-021-06633-z

Keywords

Neural network; Machine learning; Generalization; Fluid flows

Funding

  1. Japan Society for the Promotion of Science [18H03758, 21H05007]
  2. Grants-in-Aid for Scientific Research [21H05007] Funding Source: KAKEN

Ask authors/readers for more resources

This paper explores techniques to promote the practical use of neural networks in fluid flow estimation, focusing on challenges such as interpretability of machine-learned results, bulking out of training data, and generalizability of neural networks. The study demonstrates methods to enhance interpretability and generalizability, as well as techniques to increase training data for fluid flow problems, indicating promising results for applications of machine learning in fluid dynamics.
We demonstrate several techniques to encourage practical uses of neural networks for fluid flow estimation. In the present paper, three perspectives which are remaining challenges for applications of machine learning to fluid dynamics are considered: 1. interpretability of machine-learned results, 2. bulking out of training data, and 3. generalizability of neural networks. For the interpretability, we first demonstrate two methods to observe the internal procedure of neural networks, i.e., visualization of hidden layers and application of gradient-weighted class activation mapping (Grad-CAM), applied to canonical fluid flow estimation problems-(1) drag coefficient estimation of a cylinder wake and (2) velocity estimation from particle images. It is exemplified that both approaches can successfully tell us evidences of the great capability of machine learning-based estimations. We then utilize some techniques to bulk out training data for super-resolution analysis and temporal prediction for cylinder wake and NOAA sea surface temperature data to demonstrate that sufficient training of neural networks with limited amount of training data can be achieved for fluid flow problems. The generalizability of machine learning model is also discussed by accounting for the perspectives of inter/extrapolation of training data, considering super-resolution of wakes behind two parallel cylinders. We find that various flow patterns generated by complex interaction between two cylinders can be reconstructed well, even for the test configurations regarding the distance factor. The present paper can be a significant step toward practical uses of neural networks for both laminar and turbulent flow problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available