4.8 Article

CellRank for directed single-cell fate mapping

Journal

NATURE METHODS
Volume 19, Issue 2, Pages 159-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41592-021-01346-6

Keywords

-

Funding

  1. Helmholtz Zentrum Munchen -Deutsches Forschungszentrum fur Gesundheit und Umwelt (GmbH)

Ask authors/readers for more resources

Computational trajectory inference is a method to reconstruct cell state dynamics from single-cell RNA sequencing experiments, but it requires prior knowledge of the direction of biological processes. CellRank is a new approach that allows single-cell fate mapping in scenarios where the direction is unknown, such as regeneration, reprogramming, and disease.
Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available