4.8 Article

Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells

Journal

NATURE CHEMISTRY
Volume 14, Issue 1, Pages 32-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41557-021-00830-y

Keywords

-

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Complex coacervate microdroplets are potential candidates as primordial cells, and gas bubbles within heated rock pores can disturb and drive the growth, fusion, and division of coacervate microdroplets.
Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available