4.8 Article

Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells

So Me Yoon et al.

Summary: Cesium lead triiodide (CsPbI3) has a desirable band gap and high thermal stability, but its power conversion efficiency (PCE) is lower than that of organic cation-based halide perovskites with identical band gaps. The PCE of CsPbI3 solar cells is mainly governed by the surface morphology and defect passivation of its thin films.

JOULE (2021)

Article Multidisciplinary Sciences

Efficient perovskite solar cells via improved carrier management

Jason J. Yoo et al.

Summary: Metal halide perovskite solar cells have shown great potential to disrupt the silicon solar cell market with their improved performance, yet still face limitations in light-harvesting due to charge carrier recombination. Efforts to enhance charge carrier management offer a path to increase device performance and approach the theoretical efficiency limit of PSCs.

NATURE (2021)

Article Multidisciplinary Sciences

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

Jaeki Jeong et al.

Summary: The research introduces a new concept of using formate anion to suppress defects in metal halide perovskite films and enhance film crystallinity, leading to improved efficiency and stability of solar cells.

NATURE (2021)

Article Multidisciplinary Sciences

Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity

Wei Hui et al.

Summary: A new method for synthesizing stable black-phase formamidinium lead iodide (α-FAPbI(3)) was reported, which enables the stable synthesis of α-FAPbI(3) under high temperature and humidity conditions, and maintains high efficiency under light stress.

SCIENCE (2021)

Article Chemistry, Physical

Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells

Lisa Krueckemeier et al.

Summary: Researchers combined numerical simulations, analytical solutions, and experimental data to study different sample geometries, and proposed a method to distinguish the contributions of different recombination, charge extraction, and capacitive effects to decay by analyzing the decay time of TPL decay.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

3D/2D passivation as a secret to success for polycrystalline thin-film solar cells

Deborah L. McGott et al.

Summary: Polycrystalline photovoltaic materials offer low costs and good scalability, but grain boundaries in these materials may affect carrier recombination. Recent studies have shown that passivation of absorber surfaces through the formation of low-dimensional van der Waals materials can improve device performance in polycrystalline thin-film photovoltaics.

JOULE (2021)

Article Chemistry, Multidisciplinary

Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%

Min Ju Jeong et al.

Summary: By incorporating gallium(iii) acetylacetonate into organic hole-transporting materials without additional surface treatment processes, the interface engineering strategy efficiently reduces the recombination loss and enhances the performance of perovskite solar cells. This method significantly improves the power conversion efficiency of PSCs and maintains stability without hygroscopic additives, showing a promising route for high performance and commercialization.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells

Luis K. Ono et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite

Jin-Wook Lee et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Halide Perovskites: Is It All about the Interfaces?

Philip Schulz et al.

CHEMICAL REVIEWS (2019)

Article Multidisciplinary Sciences

Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)

Eui Hyuk Jung et al.

NATURE (2019)

Review Chemistry, Multidisciplinary

Defect and Contact Passivation for Perovskite Solar Cells

Erkan Aydin et al.

ADVANCED MATERIALS (2019)

Article Optics

Surface passivation of perovskite film for efficient solar cells

Qi Jiang et al.

NATURE PHOTONICS (2019)

Article Multidisciplinary Sciences

Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation

Alessandra Alberti et al.

NATURE COMMUNICATIONS (2019)

Article Multidisciplinary Sciences

Absolute energy level positions in tin-and lead-based halide perovskites

Shuxia Tao et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

Low-temperature-processed SnO2-Cl for efficient PbS quantum-dot solar cells via defect passivation

Jahangeer Khan et al.

JOURNAL OF MATERIALS CHEMISTRY A (2017)

Editorial Material Chemistry, Physical

Lead-Free Perovskite Solar Cells

Prashant V. Kamat et al.

ACS ENERGY LETTERS (2017)

Article Nanoscience & Nanotechnology

Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite

Sheng Chen et al.

ACS APPLIED MATERIALS & INTERFACES (2017)

Article Chemistry, Multidisciplinary

Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide

Elham Halvani Anaraki et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Article Chemistry, Physical

Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K

Mark T. Weller et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2015)

Article Chemistry, Multidisciplinary

Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells

Weijun Ke et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Multidisciplinary Sciences

Compositional engineering of perovskite materials for high-performance solar cells

Nam Joong Jeon et al.

NATURE (2015)

Article Physics, Multidisciplinary

Origins of coexistence of conductivity and transparency in SnO2 -: art. no. 095501

Ç Kiliç et al.

PHYSICAL REVIEW LETTERS (2002)