4.8 Review

Research progress on photocatalytic reduction of CO2 based on LDH materials

Journal

NANOSCALE
Volume 14, Issue 9, Pages 3367-3386

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr08235c

Keywords

-

Funding

  1. National Key R&D Program of China [2018YFB0605002]
  2. National Natural Science Foundation of China [21546014]

Ask authors/readers for more resources

Converting CO2 to renewable fuels or valuable carbon compounds through photocatalytic reduction is an energy-saving and environmentally friendly method, and layered double hydroxide (LDH) has attracted significant attention as a two-dimensional material in this field. This review provides an overview of the research progress of LDH in the photocatalytic reduction of CO2 from different perspectives and presents the development prospects.
Converting CO2 to renewable fuels or valuable carbon compounds is an effective way to solve the global warming and energy crisis. Compared with other CO2 conversion methods, photocatalytic reduction of CO2 is more energy-saving, environmentally friendly, and has a broader application prospect. Layered double hydroxide (LDH) has attracted widespread attention as a two-dimensional material, composed of metal hydroxide layers, interlayer anions and water molecules. This review briefly introduces the basic theory of photocatalysis and the mechanism of CO2 reduction. The composition and properties of LDH are introduced. The research progress on LDH in the field of photocatalytic reduction of CO2 is elaborated from six aspects: directly as a catalyst, as a precursor for a catalyst, and by modification, intercalation, supporting with other materials and construction of a heterojunction. Finally, the development prospects of LDH are put forward. This review could provide an effective reference for the development of more efficient and reasonable photocatalysts based on LDH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available