4.8 Article

In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia

Journal

NANO RESEARCH
Volume 15, Issue 4, Pages 3050-3055

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-021-3951-5

Keywords

Fe3O4 particle; NO3- reduction reaction; NH3 synthesis; electrocatalysis

Funding

  1. National Natural Science Foundation of China [22072015]

Ask authors/readers for more resources

This work presents Fe3O4/SS as an efficient electrocatalyst for NO3- reduction to NH3, achieving high Faradaic efficiency and NH3 yield in NaNO3 and NaOH solution, with robust structural and electrochemical stability. The study provides valuable insights for expanding the application of metallic oxide electrocatalysts in NH3 synthesis, supported by theoretical calculations uncovering the catalytic mechanism.
NH3 is an essential feedstock for fertilizer synthesis. Industry-scale NH3 synthesis mostly relies on the Haber-Bosch method, however, which suffers from massive CO2 emission and high energy consumption. Electrocatalytic NO3- reduction is an attractive substitute to the Haber-Bosch method for synthesizing NH3 under mild conditions. As this reaction will produce a variety of products, it highly desires efficient and selective electrocatalyst for NH3 generation. Here, we report in situ grown Fe3O4 particle on stainless steel (Fe3O4/SS) as a high-efficiency electrocatalyst for NO3- reduction to NH3. In 0.1 M NaOH with 0.1 M NaNO3, such Fe3O4/SS reaches a remarkable Faradaic efficiency of 91.5% and a high NH3 yield of 10,145 mu g.h(-1).cm(-2) at -0.5 V vs. reversible hydrogen electrode (RHE). Furthermore, it owns robust structural and electrochemical stability. This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH3 synthesis. The catalytic mechanism is uncovered and discussed further by theoretical calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available