4.6 Article

An efficient image encryption scheme for healthcare applications

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 81, Issue 5, Pages 7253-7270

Publisher

SPRINGER
DOI: 10.1007/s11042-021-11812-0

Keywords

Medical images; Biomedical systems; Privacy; Security; Healthcare; Image Encryption; Big data

Funding

  1. Department of Science and Technology (DST) New Delhi, Government of India [DST/INSPIRE/03/2018/000093]

Ask authors/readers for more resources

In this study, an adaptive framework is proposed to preserve the security and confidentiality of images transmitted through an e-healthcare system. The scheme utilizes a 3D-chaotic system and various techniques such as pixel diffusion and criss-cross diffusion to enhance image security. The performance of the scheme is evaluated using different analysis methods, and it has shown promising results in terms of security and applicability in AI-based healthcare.
In recent years, there has been an enormous demand for the security of image multimedia in healthcare organizations. Many schemes have been developed for the security preservation of data in e-health systems however the schemes are not adaptive and cannot resist chosen and known-plaintext attacks. In this contribution, we present an adaptive framework aimed at preserving the security and confidentiality of images transmitted through an e-healthcare system. Our scheme utilizes the 3D-chaotic system to generate a keystream which is used to perform 8-bit and 2-bit permutations of the image. We perform pixel diffusion by a key-image generated using the Piecewise Linear Chaotic Map (PWLCM). We calculate an image parameter using the pixels of the image and perform criss-cross diffusion to enhance security. We evaluate the scheme's performance in terms of histogram analysis, information entropy analysis, statistical analysis, and differential analysis. Using the scheme, we obtain the average Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) values for an image of size 256 x 256 equal to 99.5996 and 33.499 respectively. Furthermore, the average entropy is 7.9971 and the average Peak Signal to Noise Ratio (PSNR) is 7.4756. We further test the scheme on 50 chest X-Ray images of patients having COVID-19 and viral pneumonia and found the average values of variance, PSNR, entropy, and Structural Similarity Index (SSIM) to be 257.6268, 7.7389, 7.9971, and 0.0089 respectively. Furthermore, the scheme generates completely uniform histograms for medical images which reveals that the scheme can resist statistical attacks and can be applied as a security framework in AI-based healthcare.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available