4.7 Article

Multiscale magnetic fields in the central molecular zone: inference from the gradient technique

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 511, Issue 1, Pages 829-842

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stac159

Keywords

magnetic field; turbulence; ISM:general; ISM:magnetic field; Galaxy: centre

Funding

  1. NASA TCAN [144AAG1967]
  2. NSF [AST 1816234]
  3. NASA ATP [AAH7546]
  4. NASA [NNA17BF53C]
  5. Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]

Ask authors/readers for more resources

The magnetic field and turbulence play a crucial role in the galactic center, particularly in the central molecular zone. The magnetic fields associated with ionized gas and radio arcs are in agreement with polarization measurements.
The central molecular zone (CMZ) plays an essential role in regulating the nuclear ecosystem of our Galaxy. To get an insight into magnetic fields of the CMZ, we employ the gradient technique (GT), which is rooted in the anisotropy of magnetohydrodynamic turbulence. Our analysis is based on the data of multiple wavelengths, including molecular emission lines, radio 1.4 GHz continuum image, and Herschel 70 mu m image, as well as ionized [Ne II] and Paschen-alpha emissions. The results are compared with the observations of Planck 353 GHz and High-resolution Airborne Wideband Camera Plus (HWAC+) 53 mu m polarized dust emissions. We map the magnetic fields orientation at multiple wavelength across the central molecular zone, including close-ups of the Radio Arc and Sagittarius A West regions, on multiscales from similar to 0.1 pc to 10 pc. The magnetic fields towards the central molecular zone traced by the GT are globally compatible with the polarization measurements, accounting for the contribution from the galactic foreground and background. This correspondence suggests that the magnetic field and turbulence are dynamically crucial in the galactic center. We find that the magnetic fields associated with the Arched filaments and the thermal components of the Radio Arc are in good agree with the HAWC+ polarization. Our measurement towards the non-thermal Radio Arc reveals the poloidal magnetic field components in the galactic center. For Sagittarius A West region, we find a great agreement between the GT measurement using [Ne II] emission and HWAC+ 53 mu m observation. We use the GT to predict the magnetic fields associated with ionized Paschen-alpha gas down to scales of 0.1 pc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available