4.7 Article

Jet streams and tracer mixing in the atmospheres of brown dwarfs and isolated young giant planets

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 511, Issue 4, Pages 4861-4881

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stac344

Keywords

hydrodynamics; methods: numerical; planets and satellites: atmospheres; planets and satellites: gaseous planets; brown dwarfs

Funding

  1. European community through the ERC advanced grant EXOCONDENSE

Ask authors/readers for more resources

Observations of brown dwarfs and young extrasolar giant planets have provided valuable insights into atmospheric dynamics. This study focuses on the formation of zonal jets, the vertical mixing of tracers, and the inhomogeneity of cloud decks. The results show that small-scale thermal perturbations can drive zonal jet streams, and robust zonal jets with speeds up to a few hundred m s(-1) are typical outcomes. The study also highlights the impact of radiative and frictional dissipation on jet formation and the transport of passive tracers.
Observations of brown dwarfs and relatively isolated young extrasolar giant planets have provided unprecedented details to probe atmospheric dynamics in a new regime. Questions about mechanisms governing the global circulation and its fundamental nature remain to be completely addressed. Previous studies have shown that small-scale randomly varying thermal perturbations resulting from interactions between convection and the overlying stratified layers can drive zonal jet streams, waves, and turbulence. In this work, we improve upon our previous work by using a general circulation model coupled with a two-stream grey radiative transfer scheme to represent more realistic heating and cooling rates. We examine the formation of zonal jets and their time evolution, and vertical mixing of passive tracers including clouds and chemical species. Under relatively weak radiative and frictional dissipation, robust zonal jets with speeds up to a few hundred m s(-1) are typical outcomes. The off-equatorial jets tend to be pressure independent, while the equatorial jets exhibit significant vertical wind shear. On the other hand, models with strong dissipation inhibit the jet formation and leave isotropic turbulence in off-equatorial regions. Quasi-periodic oscillations of the equatorial flow with periods ranging from tens of days to months are prevalent at relatively low atmospheric temperatures. Submicron cloud particles can be easily transported to several scale heights above the condensation level, while larger particles form thinner layers. Cloud decks are significantly inhomogeneous near their cloud tops. Chemical tracers with chemical time-scales >10(5) s can be driven out of equilibrium. The equivalent vertical diffusion coefficients, K-zz, for the global-mean tracer transport are diagnosed from our models and are typically on the order of 1-10(2) m(2) s(-1). Finally, we derive an analytic estimation of K-zz for different types of tracers under relevant conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available