4.6 Article

Diaryl Sulfide Derivatives as Potential Iron Corrosion Inhibitors: A Computational Study

Journal

MOLECULES
Volume 26, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26206312

Keywords

diaryl sulfides; DFT; MC simulation; corrosion inhibitor; dapsone

Funding

  1. Taif University, Taif, Saudi Arabia [TURSP-2020/03]

Ask authors/readers for more resources

This study evaluated six diaryl sulfide derivatives as potential corrosion inhibitors, finding that five of them may be more effective than dapsone as corrosion inhibitors.
The present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4 '-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the reference compound to evaluate the efficiency of the remainder. In this respect, two structural factors were examined, namely, (i) the effect of replacement of the S-atom of diaryl sulfide by SO or SO2 group, (ii) the effect of the introduction of an electron-withdrawing or an electron-donating group in the aryl moiety. Two computational chemical approaches were used to achieve the objectives: the density functional theory (DFT) and the Monto Carlo (MC) simulation. First, B3LYP/6-311+G(d,p) model chemistry was employed to calculate quantum chemical descriptors of the studied molecules and their geometric and electronic structures. Additionally, the mode of adsorption of the tested molecules was investigated using MC simulation. In general, the adsorption process was favorable for molecules with a lower dipole moment. Based on the adsorption energy results, five diaryl sulfide derivatives are expected to act as better corrosion inhibitors than dapsone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available