4.6 Article

Bis(4-methylpiperidine-1-carbodithioato)-lead(II) and Bis(4-benzylpiperidine-1-carbodithioato)-lead(II) as Precursors for Lead Sulphide Nano Photocatalysts for the Degradation of Rhodamine B

Journal

MOLECULES
Volume 26, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26237251

Keywords

lead(II) dithiocarbamate; crystal structure; lead sulfide; nanophotocatalyst; photodegradation; rhodamine B

Funding

  1. National Research Foundation [125279]

Ask authors/readers for more resources

Bis(4-methylpiperidine-1-carbodithioato)-lead(II) and bis(4-benzylpiperidine-1-carbodithioato)-lead(II) were synthesized and used as precursors for lead sulphide nano photocatalysts for the degradation of rhodamine B. The prepared PbS nanoparticles showed relatively good photostability with a slight decrease in photodegradation efficiency as the reusability cycles progressed.
Bis(4-methylpiperidine-1-carbodithioato)-lead(II) and bis(4-benzylpiperidine-1-carbodithioato)-lead(II) were prepared and their molecular structures elucidated using single crystal X-ray crystallography and spectroscopic techniques. The compounds were used as precursors for the preparation of lead sulphide nano photocatalysts for the degradation of rhodamine B. The single crystal structures of the lead(II) dithiocarbamate complexes show mononuclear lead(II) compounds in which each lead(II) ion coordinates two dithiocarbamato anions in a distorted tetrahedral geometry. The compounds were thermolyzed at 180 celcius in hexadecylamine (HDA), octadecylamine (ODA), and trioctylphosphine oxide (TOPO) to prepare HDA, ODA, and TOPO capped lead sulphide (PbS) nanoparticles. Powder X-ray diffraction (pXRD) patterns of the lead sulphide nanoparticles were indexed to the rock cubic salt crystalline phase of lead sulphide. The lead sulphide nanoparticles were used as photocatalysts for the degradation of rhodamine B with ODA-PbS1 achieving photodegradation efficiency of 45.28% after 360 min. The photostability and reusability studies of the as-prepared PbS nanoparticles were studied in four consecutive cycles, showing that the percentage degradation efficiency decreased slightly by about 0.51-1.93%. The results show that the as-prepared PbS nanoparticles are relatively photostable with a slight loss of photodegradation activities as the reusability cycles progress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available