4.7 Review

Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications

Journal

MOLECULAR PLANT
Volume 15, Issue 1, Pages 104-124

Publisher

CELL PRESS
DOI: 10.1016/j.molp.2021.12.005

Keywords

inositol pyrophosphate; plant nutrient; PHR1 transcription factor; PUE (phosphorus acquisition and use efficiency); SPX sensor; and STOP1 transcription factor

Funding

  1. Ministry of Science and Innovation, Spain [BIO2017-89530-R, BIO2020-118750RB-100]

Ask authors/readers for more resources

This article reviews the importance of phosphorus in plant growth and the adaptive mechanisms plants have developed to cope with phosphorus limitation. Research has identified several signaling molecules involved in the regulation of the phosphorus starvation rescue system, and complex interactions between phosphorus and other nutrients have been discovered. Improving phosphorus use efficiency can enhance plant uptake and utilization of phosphorus.
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available