4.7 Article

Genetic diversity and the origins of parthenogenesis in the teiid lizard Aspidoscelis laredoensis

Journal

MOLECULAR ECOLOGY
Volume 31, Issue 1, Pages 266-278

Publisher

WILEY
DOI: 10.1111/mec.16213

Keywords

demographic modelling; f-statistics; hybridization; RADseq; sex evolution; unisexual squamates

Funding

  1. National Science Foundation [DEB-1754350, DEB-190017]

Ask authors/readers for more resources

Unisexual vertebrates typically form through hybridization events between sexual species, which can have important ecological consequences. Studying the genetic diversity in unisexual lineages has proven challenging, especially in understanding the contribution of historical hybridization events versus post formational mutation. This study on a diploid unisexual lizard species in Texas and Mexico highlights the genetic variation and historical patterns of hybridization, providing insights into the mechanisms that generate and maintain lineage diversity in unisexual species.
Unisexual vertebrates typically form through hybridization events between sexual species in which reproductive mode transitions occur in the hybrid offspring. This evolutionary history is thought to have important consequences for the ecology of unisexual lineages and their interactions with congeners in natural communities. However, these consequences have proven challenging to study owing to uncertainty about patterns of population genetic diversity in unisexual lineages. Of particular interest is resolving the contribution of historical hybridization events versus post formational mutation to patterns of genetic diversity in nature. Here we use restriction site associated DNA genotyping to evaluate genetic diversity and demographic history in Aspidoscelis laredoensis, a diploid unisexual lizard species from the vicinity of the Rio Grande River in southern Texas and northern Mexico. The sexual progenitor species from which one or more lineages are derived also occur in the Rio Grande Valley region, although patterns of distribution across individual sites are quite variable. Results from population genetic and phylogenetic analyses resolved the major axes of genetic variation in this species and highlight how these match predictions based on historical patterns of hybridization. We also found discordance between results of demographic modelling using different statistical approaches with the genomic data. We discuss these insights within the context of the ecological and evolutionary mechanisms that generate and maintain lineage diversity in unisexual species. As one of the most dynamic, intriguing, and geographically well investigated groups of whiptail lizards, these species hold substantial promise for future studies on the constraints of diversification in unisexual vertebrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available