4.5 Article

Epigenetic Silencing of 15-Hydroxyprostaglandin Dehydrogenase by Histone Methyltransferase EHMT2/G9a in Cholangiocarcinoma

Journal

MOLECULAR CANCER RESEARCH
Volume 20, Issue 3, Pages 350-360

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-21-0536

Keywords

-

Funding

  1. NIH [CA102325, CA219541, CA226281]
  2. Department of Defense [CA180361]

Ask authors/readers for more resources

This study reveals a novel G9a-15PGDH signaling axis that is important in the development and progression of cholangiocarcinoma (CCA). 15-PGDH is epigenetically silenced by G9a, and inhibition of G9a can restore 15-PGDH expression and inhibit CCA cell growth.
Cholangiocarcinoma (CCA) is a lethal malignancy with few therapeutic options. NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been shown to inhibit CCA cell growth in vitro and in xenograft models. However, the role of 15-PGDH in CCA development has not been investigated and the mechanism for 15-PGDH gene regulation remains unclear. Here, e evaluated the role of 15-PGDH in CCA development by using a mouse model with hydrodynamic tail vein injection of transposase-based plasmids expressing Notch1 intracellular domain and myrAkt, with or without co-injection of 15-PGDH expression plasmids. Our results reveal that 15-PGDH overexpression effectively prevents CCA development. Through patient data mining and experimental approaches, we provide novel evidences that 15-PGDH is epigenetically silenced by histone methyltransferase G9a. We observe that 15-PGDH and G9a expressions are inversely correlated in both human and mouse CCAs. By using CCA cells and mouse models, we show that G9a inhibition restores 15-PGDH expression and inhibited CCA in vitro and in vivo. Mechanistically, our data indicate that G9a is recruited to 15-PGDH gene promoter via protein-protein interaction with the E-box binding Myc/Max heterodimer. The recruited G9a then silences 15-PGDH gene through enhanced methylation of H3K9. Our further experiments have led to the identification of STAT4 as a key transcription factor involved in the regulation of 15-PGDH by G9a. Collectively, our findings disclose a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available