4.4 Article

Cytoskeleton integrity influences XRCC1 and PCNA dynamics at DNA damage

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 32, Issue 20, Pages -

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E20-10-0680

Keywords

-

Categories

Funding

  1. Swiss National Science Foundation [31003A_176286]
  2. Novartis Research Foundation
  3. Swiss National Science Foundation (SNF) [31003A_176286] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

DNA damage induced by 405-nm laser light recruits proteins involved in base excision repair (BER), but perturbing actin or tubulin polymerization in human cells alters the dynamics of BER factors. Depolymerization of cytoplasmic actin may compromise BER efficiency in mammals due to increased levels of nuclear actin and tubulin, linking cytoskeletal integrity to BER.
On induction of DNA damage with 405-nm laser light, proteins involved in base excision repair (BER) are recruited to DNA lesions. We find that the dynamics of factors typical of either short-patch (XRCC1) or long-patch (PCNA) BER are altered by chemicals that perturb actin or tubulin polymerization in human cells. Whereas the destabilization of actin filaments by latrunculin B, cytochalasin B, or Jasplakinolide decreases BER factor accumulation at laser-induced damage, inhibition of tubulin polymerization by nocodazole increases it. We detect no recruitment of actin to sites of laser-induced DNA damage, yet the depolymerization of cytoplasmic actin filaments elevates both actin and tubulin signals in the nucleus. While published evidence suggested a positive role for F-actin in double-strand break repair in mammals, the enrichment of actin in budding yeast nuclei interferes with BER, augmenting sensitivity to Zeocin. Our quantitative imaging results suggest that the depolymerization of cytoplasmic actin may compromise BER efficiency in mammals not only due to elevated levels of nuclear actin but also of tubulin, linking cytoskeletal integrity to BER.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available