4.3 Article

Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2021, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2021/9951220

Keywords

-

Ask authors/readers for more resources

This study introduces a multiobjective mixed-integer nonlinear programming model for designing a closed-loop supply chain, aiming to minimize costs, consider social scales and network flexibility, and minimize environmental impacts. The improved epsilon-constraints approach and Lagrangian relaxation approach are used to solve the model, followed by sensitivity analysis on important parameters.
In this study, we present a multiobjective mixed-integer nonlinear programming (MINLP) model to design a closed-loop supply chain (CLSC) from production stage to distribution as well as recycling for reproduction. The given network includes production centers, potential points for establishing of distribution centers, retrieval centers, collecting and recycling centers, and the demand points. The presented model seeks to find optimal locations for distribution centers, second-hand product collection centers, and recycling centers under the uncertainty situation alongside the factory's fixed points. The purpose of the presented model is to minimize overall network costs including processing, establishing, and transportation of products and return flows as well as environmental impacts while maximizing social scales and network flexibility according to the presence of uncertainty parameters in the problem. To solve the proposed model with fuzzy uncertainty, first, the improved epsilon (epsilon)-constraints approach is used to transform a multiobjective to a single-objective problem. Afterward, the Lagrangian relaxation approach is applied to effectively solve the problem. A real-world case study is used to evaluate the performance of the proposed model. Finally, sensitivity analysis is performed to study the effects of important parameters on the optimal solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available