4.3 Article

Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles

Journal

BIOMATERIALS ADVANCES
Volume 134, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2021.112592

Keywords

Hierarchical ZnO NPs; Anti-virulence; Candida; Morphogenesis; Biofilm; RT-PCR; Biocompatibility

Funding

  1. DST PURSE
  2. UPE-II programme (2017-2018) of SPPU
  3. Biotechnology Department instrument facilities

Ask authors/readers for more resources

The present study demonstrates the synthesis of different forms of zinc oxide nanoparticles using lignin, fragments of lignin, and oxidized fragmented lignin as templates, and investigates their inhibitory effects on the growth and virulence of Candida albicans. Hierarchical FL-ZnO NPs show the highest inhibition, and they exhibit biocompatibility and non-toxicity in vitro and in vivo toxicity tests.
The present study demonstrates lignin (L), fragments of lignin (FL), and oxidized fragmented lignin (OFL) as templates for the synthesis of zinc oxide nanoparticles (ZnO NPs) viz., lignin-ZnO (L-ZnO), hierarchical FL-ZnO, and OFL-ZnO NPs. The X-ray diffraction patterns confirmed the formation of phase pure ZnO NPs with a hexagonal wurtzite structure. Electron microscopy confirmed the hierarchical structures with one-dimensional arrays of ZnO NPs with an average particle diameter of 40 nm. The as-synthesized L-ZnO, FL-ZnO, and OFL-ZnO NPs were tested in-vitro for growth and virulence inhibition (morphogenesis and biofilm) in Candida albicans. L-ZnO, FL-ZnO, and OFL-ZnO NPs all inhibited growth and virulence. Growth and virulence inhibitions were highest (more than 90%, respectively at 125, 31.2, and 623 mu g/mL) in presence of FL-ZnO NPs, indicating that the hierarchical FL-ZnO NPs were potent growth and virulence inhibiting agent than non-hierarchical ZnO NPs. Furthermore, the real-time polymerase chain (RT-PCR) was used to study the virulence inhibition molecular mechanisms of L-ZnO, FL-ZnO, and OFL-ZnO NPs. RT-PCR results showed that the downregulation of phr1, phr2, efg1, hwp1, ras1, als3 and als4, and the upregulation of bcy1, nrg1, and tup1 genes inhibited the virulence in G. albicans. Lastly, we also performed in-vitro test cell cytotoxicity on the cell line, mouse embryo 3T3L1, and in-vivo toxicity on Rats, which showed that FL-ZnO NPs were biocompatible and nontoxic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available