4.7 Article

Control and Characterization of the Compactness of Single-Chain Nanoparticles

Journal

MACROMOLECULES
Volume 54, Issue 24, Pages 11459-11467

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.1c02071

Keywords

-

Funding

  1. Swiss National Foundation Division II [.185062]

Ask authors/readers for more resources

The compactness of single-chain polymer nanoparticles (SCNPs) can be controlled by initial reaction conditions and the length of cross-linking molecules. Short cross-linking molecules may result in less compact SCNPs, while precollapsed chains lead to more compact particles after cross-linking. The toxicity of particles interacting with HeLa cells differs depending on their compactness, with more compact ones being less toxic.
Polymers when self-cross-linked into single-chain nanoparticles bear some resemblance to folded proteins; yet proteins have clear energy landscapes that determine precisely folded structures, while single-chain polymer nanoparticles (SCNPs) have more undefined structures. There have been initial reports showing that some structural parameters in SCNPs can be controlled, for example, compactness. Here, we construct SCNPs from poly(allylamine) (M-w similar to 22 000 Da) with dicarboxylic acids (HOOC-R-COOH) in solvent conditions, where initial chains adopt either extended or collapsed conformation. The spacer groups R that we used were -CH2CH2-, -(CH2S)(2)-, or -(CH2CH2)(3)-, whose length can be estimated to vary from similar to 4 to similar to 12 A. We present a systematic study that uses several characterization techniques (H-1 NMR diffusion-ordered spectroscopy (DOSY), viscometry, analytical ultracentrifugation, and H-1 NMR T-2 relaxation) to show that both initial reaction conditions as well as length of cross-linking molecules determine the final compactness of SCNPs. Specifically, when short cross-linking molecules are applied, short-range loops dominate and the cross-linking process fails to achieve global chain compaction, leading to less compact SCNPs. When the chain is precollapsed (0.1 M water solution of NaCl or 10 vol % ethanol as opposed to DI water), the particles resulting after cross-linking are more compact. Of utmost practical relevance, we show that particles that are essentially chemically identical but differ only in compactness have different toxicity when interacting with HeLa cells, the more compact ones being less toxic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available