4.6 Article

Genetically modified mesenchymal stem cells promote spinal fusion through polarized macrophages

Journal

LABORATORY INVESTIGATION
Volume 102, Issue 3, Pages 312-319

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/s41374-021-00693-4

Keywords

-

Funding

  1. Natural Science Foundation of China [81672217]

Ask authors/readers for more resources

The study addressed the indirect effects of mesenchymal stem cells (MSCs) on spinal fusion through macrophages, finding that posterior spinal fusion is improved by placental growth factor (PlGF)-expressing MSCs, likely through attracting macrophages and inducing their M2 polarization, which promotes bone formation.
Spinal fusion is an effective treatment for low back pain and typically applied with prosthetic fixation devices. Spinal fusion can be improved by transplantation of mesenchymal stem cells (MSCs) into the paraspinal muscle. However, in contrast to the direct contribution of MSCs to spinal fusion, the indirect effects of MSCs on spinal infusion have not been studied and were thus addressed here. The correlation between the outcome of spinal fusion and the local macrophage number, polarization and the levels of placental growth factor (PlGF) in patients was analyzed. MSCs were genetically modified to overexpress PlGF, and its effects on macrophage proliferation and polarization were analyzed in vitro in a transwell co-culture system, as well as in vivo in a mouse model for spinal fusion, for which the cells were bilaterally injected into paravertebral muscles of the mouse lumbar spine. The effects on spinal fusion were assessed by microcomputed tomography and a custom four-point bending apparatus for structural bending stiffness. Local macrophages were analyzed by flow cytometry. We found that posterior spinal fusion could be improved by PlGF-expressing MSCs, compared to the control MSCs, evident by significant improvement of bone bridging of the targeted vertebrae. Mechanistically, PlGF-expressing MSCs appeared to attract macrophages and induce their M2 polarization, which in turn promotes the bone formation. Together, our data suggest that PlGF-expressing MSCs may improve spinal fusion through macrophage recruitment and polarization. The authors examined the indirect effects of mesenchymal stem cells (MSCs) on spinal infusion through macrophages. They found that posterior spinal fusion is improved by placental growth factor (PlGF)-expressing MSCs, likely through attraction of macrophages and indution their M2 polarization, which in turn promotes the bone formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available