4.7 Article

Study on the pressure pipe length in train aerodynamic tests and its applications in crosswinds

Publisher

ELSEVIER
DOI: 10.1016/j.jweia.2021.104880

Keywords

Pressure pipe length; Train aerodynamics; Pressure pulsation frequency; Crosswinds; Full-scale tests

Funding

  1. National Key R&D Program of China [2020YFA0710903]

Ask authors/readers for more resources

This study analyzes the effect of pressure pipe length on train surface pressure fluctuations through field tests and determines an appropriate length. It also investigates the aerodynamic performance of trains under crosswind conditions.
The pressure integral method is frequently used to obtain the train aerodynamic forces in experiments, but the effect of the pressure pipe length on the pressure amplitude is not understood. In this paper, based on field tests without pressure pipes, the dominant frequency (DF) ranges of the pressure pulsations on the train surface under various conditions, including open-air, crosswind, and tunnel conditions, were analyzed. Then the effect of the pressure pipe length on the pressure amplitude with various pulsation frequencies was investigated. Finally, in a full-scale test under crosswinds, the selected pressure pipe length was applied to verify its reliability and to study the train aerodynamic performance. The results showed that the maximum DF occurred when two trains passed each other (near 60 Hz), and the DF under crosswinds was the smallest (less than 1 Hz). When the pressure pulsation frequency was less than 1 Hz, the error range of the pressure amplitude was less than 5% with a pressure pipe length of & LE;8 m. The pressure pipe is a polyvinyl chloride (PVC) pipe with an outer diameter of 2 mm and an inner diameter of 1.8 mm. The full-scale test results for the windproof ability of different windbreak walls and the aerodynamic forces of the train showed that the current pressure pipe length was reasonable and could reflect the actual operating conditions of the train under crosswinds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available