4.6 Article

Deposition and Dissolution of Lithium in 1-Methyl-1-methoxyethylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolyte with Different Compositions

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 168, Issue 10, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ac2a7e

Keywords

ionic liquids; bis(fluorosulfonyl)amide; 1-methyl-1-methoxyethylpyrrolidinium; solid electrolyte interphase; lithium anode

Funding

  1. Keio Leading-edge Laboratory of Science and Technology (KLL)

Ask authors/readers for more resources

The research found that the physicochemical properties and coordination states of Li+ with FSA(-) were similar in MPPFSA and MOEMPFSA at various LiFSA concentrations, but the SEI resistance in MPPFSA increased significantly over time, suggesting the SEI in MOEMPFSA was more conductive. Increasing LiFSA concentration improved the cyclability of Li deposition and dissolution, potentially promoting homogeneous growth of Li.
The solid electrolyte interphase (SEI) between Li and ionic liquid electrolytes was investigated in 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)amide (MPPFSA) and 1-methyl-1-methoxyethylpyrrolidinium bis(fluorosulfonyl)amide (MOEMPFSA) with different LiFSA concentrations. The physicochemical properties and the coordination states of Li+ with FSA(-) with increasing the LiFSA concentration were similar between xLiFSA-MPPFSA and MOEMPFSA. On the other hand, the SEI resistance obtained by electrochemical impedance spectroscopy using a Li divide Li symmetrical cell increased with the lapse of time in xLiFSA-MPPFSA more significantly than in xLiFSA-MOEMPFSA, suggesting that the SEI formed in xLiFSA-MOEMPFSA was more conductive than that in xLiFSA-MPPFSA. The SEI formed on Li was considered to be composed mainly of the ions in the electrolytes and their decomposed products by X-ray photoelectron spectroscopy. The cyclability of deposition and dissolution of Li was improved with increasing the LiFSA concentration in both xLiFSA-MPPFSA and MOEMPFSA. An increase in the conductivity of the SEI with increasing the LiFSA concentration may lead to the promotion of homogeneous growth of Li rather than dendritic growth of Li.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available