4.5 Article

Impe dance mismatch-base d enhancement of broadband reflectance of tungsten with bio-inspired multilayers

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2021.107899

Keywords

Spectral reflection; Broadband reflectivity; Thin-film coatings; Impedance mismatch method; Morpho butterfly patterns

Funding

  1. Air Force Office of Scientific Research (Aerospace Materials for Extreme Environments Program) [FA9550-18-1-9240]

Ask authors/readers for more resources

The paper proposes a bio-inspired multilayer structure to reduce the absorption of Tungsten over a broadband spectrum, mimicking the patterns on butterfly wings. By optimizing the thickness and number of layers, the spectral characteristics of the coatings can be improved.
Optical coatings composed of thermomechanically superior materials with high reflectance in the broadband spectrum have recently attracted attention. Tungsten (W), among other VIB group materials, suits well for applications that require high thermomechanical stability but suffer from low reflectivity below 1 mu m. This paper proposes a bio-inspired multilayer structure that lowers Tungsten's absorption over a broadband spectrum. The proposed design mimics the patterns observed on Morpho butterfly wings and reduces the absorption of W over a broad spectrum. At the initial stage, the impedance mismatch method is implemented to optimize the number and thickness of the homogeneous multilayers over the broadband spectrum. Then, the proposed pattern is incorporated into the homogenous structure. The effect of inhomogeneities on the transverse directions is investigated. The resulting spectral characteristics of both homogeneous and inhomogeneous structures are analyzed by wave impedance analysis. The total optical path was extracted with this analysis. Using this analysis, the mechanisms that trigger sharp reflection dips in homogenous layers are uncovered. S-parameters of the inhomogeneous structures are extracted and evaluated. Our findings indicate that the increased rate of change of the S-parameters phase in inhomogeneous structures is responsible for increased dips over the spectrum. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available