4.8 Article

Charge and Spin Dynamics and Enantioselectivity in Chiral Molecules

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 13, Issue 3, Pages 808-814

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.1c03925

Keywords

-

Funding

  1. Vetenskapsradet
  2. Stiftelsen Olle Engkvist Byggmastare

Ask authors/readers for more resources

This study investigates the charge and spin dynamics in chiral molecules after their immediate coupling to an external metallic reservoir. The research describes the induction of spin polarization in chiral structures as a response to charge dynamics. The dynamics show that chirality-induced spin selectivity is an excited state phenomenon that can be partially explained using a simplistic single-particle description in the transient regime, but in the stationary limit, electron correlations, such as electron-vibration interactions, are crucial in sustaining an intrinsic spin anisotropy that leads to a nonvanishing spin selectivity. Furthermore, the dynamics provide insight into enantiomer separation based on different acquired spin polarizations.
Charge and spin dynamics are addressed in chiral molecules immediately after their instantaneous coupling to an external metallic reservoir. This work describes how a spin polarization is induced in the chiral structure as a response to the charge dynamics. The dynamics indicate that chiral induced spin selectivity is an excited state phenomenon that in the transient regime can be partly captured using a simplistic single-particle description but in the stationary limit definitively shows that electron correlations, e.g., electron-vibration interactions, crucially contribute to sustain an intrinsic spin anisotropy that can lead to a nonvanishing spin selectivity. The dynamics, moreover, provide insight into enantiomer separation, due to different acquired spin polarizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available