4.3 Review

Chitinases and immunity: Ancestral molecules with new functions

Journal

IMMUNOBIOLOGY
Volume 221, Issue 3, Pages 399-411

Publisher

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.imbio.2015.11.014

Keywords

Chitotriosidase; Chitinase 3 like 1; Chitinase 3 like 2; Stabilin-interacting chitinase-like proteins; Immune response

Categories

Ask authors/readers for more resources

Chitinases belonging to 18 glycosyl hydrolase family is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In humans, despite the absence of endogenous chitin, a number of Chitinases and Chitinase-like Proteins (C/CLPs) have been identified. Chitinases with enzymatic activity have a chitin binding domain containing six cysteine residues responsible for their binding to chitin. In contrast, CLPs do not contain such typical chitin-binding domains, but still can bind to chitin with high affinity. Molecular phylogenetic analyses suggest that active Chitinases result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. For the majority of the mammalian chitinases the last decades have witnessed the appearance of a substantial number of studies describing their expression differentially regulated during more specific immunologic activities. It is becoming increasingly clear that their function is not exclusive to catalyse the hydrolysis of chitin producing pathogens, but include crucial role in bacterial infections and inflammatory diseases. Here we provide an overview of all family members to shed light on the mechanisms and molecular interactions of Chitinases and CLPs in relation to immune response regulation, in order to delineate their future utilization as diagnostic and prognostic markers for numerous diseases. (C) 2015 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available