4.6 Article

A new visible light absorbing organic filter offers superior protection against pigmentation by wavelengths at the UVR-visible boundary region

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2021.112372

Keywords

Pigmentation; Photodermatology; Photoprotection; UV radiation; Visible radiation; Blue light; Longwave UVA

Funding

  1. BASF GmbH
  2. National Institute for Health Research (NIHR) Clinical Research Facility at Guy's & St Thomas NHS Foundation Trust
  3. NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London

Ask authors/readers for more resources

Skin pigmentation can be induced by both solar ultraviolet radiation and visible light, and oxidative stress is believed to be the cause. The study highlights the need to improve photoprotection at the UVR-visible border and emphasizes the role of sunscreens as neutral density filters.
Skin pigmentation by solar ultraviolet radiation (UVR; ~295-400 nm) is well established. More recently, visible light (VL; 400-740 nm) has been shown to induce rapid pigmentation. Such pigmentation is thought to be caused by oxidative stress, which has associations with skin cancer and photoageing. However, the UVR-VL boundary region has been less well studied. The lower back of healthy Fitzpatrick skin type II-IV individuals was irradiated with increasing doses of narrow-band 385 nm and 405 nm radiation. Pigmentation change was measured immediately, 6 h and 24 h post-irradiation using two reflectance spectroscopy devices and visual grading. Pigmentation was dose-dependently increased in all skin types and time points for both spectra. Two sunscreens, both labelled SPF 15 and UVA protective in the EU and USA (but with different Boots star rating in the UK, 2* vs 5*) were compared. Their formulations were the same apart from the addition of a new organic filter bis(diethylaminohydroxybenzoyl benzoyl) piperazine (BDBP) that absorbs between 350 and 425 nm. The product that lacked BDBP provided minimal protection against pigmentation, but its addition provided almost complete protection. This demonstrates the needs to improve photoprotection at the UVR-visible border and for sunscreens to act as neutral density filters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available