4.6 Article

RhOx cocatalyst for efficient water oxidation over TaON photoanodes in wide pH range under visible-light irradiation

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2021.113463

Keywords

Water oxidation; Cocatalyst; Oxynitride; Photoanode; Photoelectrochemical water splitting

Funding

  1. JSPS KAKENHI [21K05245, 18K05296, 17H06439]
  2. Grants-in-Aid for Scientific Research [18K05296, 21K05245] Funding Source: KAKEN

Ask authors/readers for more resources

The research demonstrates that nanoparticulate RhOx species can serve as an effective cocatalyst to enhance O2 evolution on TaON photoanodes under acidic conditions, showing superior activity and versatility compared to previous CoOx systems.
Because the oxidation of water is both the key and a common process in artificial photosynthesis systems, coupled with the reduction of water or carbon dioxide, the development of photocatalysts or photoelectrodes that can efficiently oxidize water to oxygen molecules (O2) under a wide range of conditions (e.g., pH) is crucial. Although the loading of CoOx cocatalysts on oxynitride (e.g., TaON) semiconductor photoanodes has been proven to boost O2 evolution significantly under basic conditions (pH > 8), their performance has been found to decrease significantly with decreasing pH, mainly owing to the dissolution of CoOx; thus, their use in CO2 reduction systems that are generally carried out under acidic solutions has been limited. Here, we demonstrate that nanoparticulate RhOx species can function as an effective cocatalyst to boost O2 evolution on TaON photoanodes under visible-light irradiation, affording not only superior activity to previous CoOx systems but also versatile performance even under acidic conditions. Although the photocurrent on the RhOx/TaON photoanode under acidic conditions (1.5 < pH < 5) was reduced to some extent (ca. 70% of that under pH 8) compared to those under basic conditions, the RhOx/TaON photoanode generated a photocurrent stably accompanied by almost stoichiometric O2 evolution (i.e., ca. 100% of Faradaic efficiency) even under the conditions where CoOx/ TaON cannot (pH 1.5 and 3). In addition, the loading of the RhOx cocatalyst shifted the onset potential of the photocurrent to a more negative potential (ca. + 0.1 V vs. RHE) compared to CoOx/TaON (ca. + 0.3 V vs. RHE), consequently enabling much more efficient photoelectrochemical water splitting even at a relatively low applied bias (0.6 V vs. Pt) in the two-electrode system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available