4.7 Article

P2O5-Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1,6-Diones

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 87, Issue 5, Pages 2456-2469

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.1c02379

Keywords

-

Funding

  1. Ministry of Science and Higher Education of Russian Federation project [FSUS-2020-0036, FSUS-2021-0014]

Ask authors/readers for more resources

A method for synthesizing pi-extended spiro-linked conjugated materials has been developed in this study, which resulted in the successful synthesis of conjugated cores fused with benzene, thiophene, and naphthalene. These compounds were decorated with active halogen atoms and exhibited high photoluminescence properties in both solution and solid state.
Conventional spiro-linked conjugated materials are attractive for organic optoelectronic applications due to the unique combination of their optical and electronic properties. However, spiro-linked conjugated materials with conjugation extension directed along the main axis of the molecule are still only rare examples among the vast number of spiro-linked conjugated materials. Herein, the synthesis, leading to pi-extended spiro-linked conjugated materials-spiro[4.4]nonane-1,6-diones and spiro- 5.5]undecane-1,7-diones-has been developed and optimized. The proposed design concept starts from readily available malonic esters and contains several steps: double alkylation of malonic ester with bromomethylaryl(hetaryl)s; conversion of a malonic ester into the corresponding malonic acid; electrophilic spirocyclization of the latter into the annulated spiro[4.4]nonane-1,6-dione or spiro[5.5]undecane-1,7-dione in the presence of phosphorus pentoxide. On the basis of these insights, the developed method yielded spiro-linked conjugated cores fused with benzene, thiophene, and naphthalene, decorated with active halogen atoms. The structures of the synthesized spirocycles were determined by single-crystal X-ray diffraction analysis. Benzene fused spiro[4.4]nonane-1,6-dione decorated with bromine atoms was transformed into V-shape phenylene-thiophene co-oligomer type spirodimers via Stille coupling. The spiro-bis(4-n-dodecylphenyl)-2,2'-bithiophene derivative possessed high photoluminescence properties in both solution and solid state with a photoluminescence quantum yield (PL QY) of 38%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available