4.7 Article

Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination

Journal

JOURNAL OF NEUROINFLAMMATION
Volume 18, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12974-021-02360-3

Keywords

Microglia; Myelin; Citrullination; TNF alpha; Remyelination

Funding

  1. NIH [R01NS115126, T32GM065841]
  2. Mayo Clinic Graduate School of Biomedical Sciences
  3. Mayo Clinic Center for MS and Autoimmune Neurology

Ask authors/readers for more resources

This study revealed that citrullinated myelin induces a unique microglial response with increased production of tumor necrosis factor alpha (TNF alpha). Injection of citrullinated myelin inhibits spontaneous remyelination significantly, while neutralization of TNF alpha restores remyelination to normal levels.
Background: Microglia are the primary phagocytes of the central nervous system and are responsible for removing damaged myelin following demyelination. Previous investigations exploring the consequences of myelin phagocytosis on microglial activation overlooked the biochemical modifications present on myelin debris. Such modifications, including citrullination, are increased within the inflammatory environment of multiple sclerosis lesions. Methods: Mouse cortical myelin isolated by ultracentrifugation was citrullinated ex vivo by incubation with the calcium-dependent peptidyl arginine deiminase PAD2. Demyelination was induced by 6 weeks of cuprizone (0.3%) treatment and spontaneous repair was initiated by reversion to normal chow. Citrullinated or unmodified myelin was injected into the primary motor cortex above the cingulum bundle at the time of reversion to normal chow and the consequent impact on remyelination was assessed by measuring the surface area of myelin basic protein-positive fibers in the cortex 3 weeks later. Microglial responses to myelin were characterized by measuring cytokine release, assessing flow cytometric markers of microglial activation, and RNAseq profiling of transcriptional changes. Results: Citrullinated myelin induced a unique microglial response marked by increased tumor necrosis factor alpha (TNF alpha) production both in vitro and in vivo. This response was not induced by unmodified myelin. Injection of citrullinated myelin but not unmodified myelin into the cortex of cuprizone-demyelinated mice significantly inhibited spontaneous remyelination. Antibody-mediated neutralization of TNF alpha blocked this effect and restored remyelination to normal levels. Conclusions: These findings highlight the role of post-translation modifications such as citrullination in the determination of microglial activation in response to myelin during demyelination. The inhibition of endogenous repair induced by citrullinated myelin and the reversal of this effect by neutralization of TNF alpha may have implications for therapeutic approaches to patients with inflammatory demyelinating disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available