4.2 Article

Study the Effects of Carbon Nanotubes and Graphene Oxide Combinations on the Mechanical Properties and Flame Retardance of Epoxy Nanocomposites

Journal

JOURNAL OF NANOMATERIALS
Volume 2021, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2021/1437929

Keywords

-

Ask authors/readers for more resources

Carbon-based fillers play a crucial role in polymer composites, and the combination of graphite oxide and multiwall carbon nanotubes can significantly improve the performance of nanocomposite materials.
Carbon-based fillers have attracted a lot of interest in polymer composites because of their ability to alter beneficial properties at low filler concentrations, good surface bonding with polymers, availability in different forms, etc. Carbon-based materials (such as fullerene, CNTs, graphene, and graphite) have been studied as fillers with enhanced fire resistance to epoxy resins. In order to reduce the flammability and improve the thermal stability of epoxy resin-based nanocomposite materials, which can be achieved by a simultaneous combination of graphene oxide and multiwall carbon nanotubes, the graphite oxide (GO) epoxy nanomaterial was developed by 1% wt.% GO combined with 0.02 wand 0.04 wt.% MWCNT. The homogeneous dispersion of GO and MWCNTs in epoxy resins is supported by ultrasonic vibrations. The results showed that when nanocomposite materials were present at the same time MWCNTs and GO, their mechanical properties and fire resistance were significantly improved. Nanomaterials are characterized by FT-IR spectroscopy and SEM imaging, mechanical strength, and flame retardant properties (LOI, UL94).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available