4.7 Article

Carbon dioxide/methane mixed-gas adsorption, permeation and diffusion in a carbon molecular sieve film: Experimental observation and modeling

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 644, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.memsci.2021.120114

Keywords

Carbon molecular sieves; Carbon dioxide/methane; Competitive sorption; Mixed-gas sorption/diffusion/permeation; IAST model

Funding

  1. King Abdullah University of Science and Technology [BAS/1/1323-01-01]

Ask authors/readers for more resources

The transport properties of a carbon molecular sieve (CMS) film in CO2-CH4 pure and mixed gases were studied. It was found that the CMS film had a lower CO2/CH4 mixed-gas solubility selectivity compared to glassy polymer films, and this selectivity increased with pressure. The presence of CO2 enhanced the diffusion coefficient of methane, indicating that CO2 diluted the sieving domains of the CMS matrix. As a result, the CMS film lost some of its size-sieving properties under mixed-gas conditions.
The CO2-CH4 pure-and mixed-gas transport properties (at 35 & nbsp;C) of a carbon molecular sieve (CMS) film ob-tained by pyrolysis of a 6FDA-mPDA polyimide precursor at 900 & nbsp;C are reported. The competitive mixed-gas adsorption of CO2 and CH4 was predicted by the Ideal Adsorbed Solution Theory (IAST) model. The CO2/CH4 mixed-gas solubility selectivity of the CMS film was lower than that of relevant glassy polymer films of various nature and increased with pressure. Mixed-gas adsorption data were coupled with gas permeation tests on the same film sample batch used for barometric adsorption measurements to derive concentration-averaged effective diffusion coefficients. Because of its large fraction of ultramicroporous bottlenecks, the diffusion coefficients of the CMS were of the same order of magnitude as those of glassy polymer films of low free volume (e.g., 6FDA-mPDA and CTA). In the range of pressures explored, the pure-gas and multicomponent CO2 diffusion coefficients overlapped; most importantly, the methane diffusion coefficient was enhanced by the presence of CO2. This result suggests that carbon dioxide dilated the sieving domains of the CMS matrix under mixed-gas environment containing highly sorbing gases such as CO2. Consequently, the CMS film lost some of its size-sieving properties as indicated by a drop in mixed-gas CO2/CH4 permselectivity relative to the values obtained under pure-gas conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available