4.7 Article

MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption

Related references

Note: Only part of the references are listed.
Article Materials Science, Multidisciplinary

Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation

Weihua Gu et al.

Summary: The combination of magnetic/dielectric materials and introduction of porous structure contribute to the optimization of impedance matching property, enhancing microwave absorption capacity. The Fe3N alloy embedded in two-dimensional porous carbon composites fabricated in this study exhibits outstanding microwave absorbing performance.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2021)

Article Chemistry, Physical

From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption

Bin Quan et al.

Summary: This study proposes a dual-principle strategy to investigate the impact of utilizing conductive absorption fillers and artificial structures on absorption performance. By combining microscopic and macroscopic design, the effective operating bandwidth of microwave has been fundamentally extended.

NANO RESEARCH (2021)

Article Chemistry, Physical

Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers

Panbo Liu et al.

Summary: This study reported the fabrication of metal porous N-doped carbon absorbers using a coordination assembly strategy, which demonstrated excellent absorption performance through structure design and composition control.

CARBON (2021)

Article Chemistry, Physical

Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber

Xiaochuang Di et al.

Summary: Thin and lightweight absorbers with strong absorption capacity are the future direction in EMW absorption research. The carbon@ZnFe2O4 composite in this study exhibited excellent microwave absorption performance with significant absorption capabilities at low thickness and filler loading.

CARBON (2021)

Article Chemistry, Physical

Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers

Yichen Wang et al.

Summary: The multi-shell hollow carbon submicrospheres (CSs) were designed to enhance microwave absorption performance, achieved through a combination of hydrothermal method, calcination, and etching process. The multi-shell CSs exhibited improved complex permittivity and tangent loss, with enhanced polarization occurring on the interfaces among different shells. This unique structure of multi-shell hollow CSs resulted in promising high-performance microwave absorbers, as indicated by the reflection loss (RL) reaching -48.5 dB with a wide effective absorption bandwidth of 4.2 GHz in the study.

CARBON (2021)

Article Chemistry, Physical

Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances

Yali Zhang et al.

Summary: The novel method of preparing Ti3C2Tx-based porous EMI shielding composite films with the assistance of graphene oxide resulted in dense surface and porous inside structure, leading to improved EMI shielding effectiveness. The Ti3C2Tx/rGO porous composite films showed superior thermal stability and electrical conductivity, with the potential for application in ultra-thin, light, and flexible EMI shielding materials.

CARBON (2021)

Article Chemistry, Physical

Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption

Yan Wang et al.

Summary: A novel hybrid nanostructure consisting of cobalt particles embedded in hollow carbon polyhedron and nanoporous carbon was reported, demonstrating improved microwave absorption properties due to the unique structure. This hybrid material shows promise for future applications in mitigating electromagnetic pollution.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Materials Science, Multidisciplinary

Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption

Wang Yang et al.

Summary: A strategy to construct hierarchical porous carbon with embedded Ni nanoparticles for microwave absorption applications is proposed, demonstrating excellent performance with ultralow filler loading. The material achieved a minimum reflection loss of -72.4 dB and a broad absorption bandwidth of 5.0 GHz. This work opens up new avenues for the development of high-performance and lightweight MA materials.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2021)

Article Engineering, Environmental

Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C

Xiaoqing Cui et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption

Lei Wang et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Nanoscience & Nanotechnology

Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption

Baiwen Deng et al.

NANO-MICRO LETTERS (2020)

Article Chemistry, Physical

NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption

Mingliang Ma et al.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2020)

Article Materials Science, Ceramics

High-temperature electromagnetic wave absorption properties of Cf/SiCNFs/Si3N4composites

Wei Zhou et al.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2020)

Article Materials Science, Ceramics

Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites

Lan Long et al.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2020)

Article Materials Science, Ceramics

Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range

Xiaodong Xia et al.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2020)

Article Nanoscience & Nanotechnology

A Flexible and Lightweight Biomass-Reinforced Microwave Absorber

Yan Cheng et al.

NANO-MICRO LETTERS (2020)

Article Materials Science, Multidisciplinary

Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance

Lei Wang et al.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2020)

Review Nanoscience & Nanotechnology

Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption

Huanqin Zhao et al.

NANO-MICRO LETTERS (2019)

Article Chemistry, Multidisciplinary

Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications

Bin Quan et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Materials Science, Multidisciplinary

Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases

Wei Zhou et al.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2019)

Article Materials Science, Multidisciplinary

Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption

Dawei Liu et al.

JOURNAL OF MATERIALS CHEMISTRY C (2019)

Article Chemistry, Multidisciplinary

A Voltage-Boosting Strategy Enabling a Low-Frequency, Flexible Electromagnetic Wave Absorption Device

Hualiang Lv et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Physical

Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon

Bin Quan et al.

JOURNAL OF ALLOYS AND COMPOUNDS (2018)

Article Materials Science, Ceramics

Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties

Heng Luo et al.

CERAMICS INTERNATIONAL (2017)

Article Materials Science, Ceramics

Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties

Wei Zhou et al.

CERAMICS INTERNATIONAL (2017)

Article Nanoscience & Nanotechnology

Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption

Hailong Xu et al.

ACS APPLIED MATERIALS & INTERFACES (2017)

Article Chemistry, Multidisciplinary

CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption

Qinghe Liu et al.

ADVANCED MATERIALS (2016)

Article Nanoscience & Nanotechnology

Yolk-Shell Ni@SnO2 Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties

Biao Zhao et al.

ACS APPLIED MATERIALS & INTERFACES (2016)