4.7 Article

Design of non-faradaic EDLC from plasticized MC based polymer electrolyte with an energy density close to lead-acid batteries

Journal

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY
Volume 105, Issue -, Pages 414-426

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2021.09.042

Keywords

Plasticized electrolyte; MC; NaI; EEC modeling; Transport properties; EDLC device

Funding

  1. University of Sulaimani, King Saud University
  2. Komar University of Science and Technology
  3. King Saud University, Riyadh, Saudi Arabia [RSP-2021/29]

Ask authors/readers for more resources

This study investigates the performance of plasticized methylcellulose (MC)-based polymer electrolytes in EDLC device applications. The addition of plasticizer enhances ionic conductivity and the performance of the assembled EDLC is evaluated.
The investigation of biodegradable polymer electrolyte for energy device applications is of great importance as a suitable alternative to the conventional electrolytes. This paper explores the employment of plasticized methylcellulose (MC)-based polymer electrolytes for energy storage EDLC device application with an energy density (46.29 Wh kg(-1)) close enough to lead-acid batteries. The results have shown that the inclusion of plasticizer can enhance the ionic conductivity to 1.17 x 10(-3) S CM-1. It was found that the prepared polymer electrolyte was stable up to 2.1 V, which is sufficient to be employed as electrolyte and separator in fabrication of electrical double layer capacitor (EDLC). Both t(e) and t(i), values have been quantified from the TNM measurements, where the t(i) values for the electrolytes containing 32 wt.% and 40 wt. % of glycerol plasticizer have been found as 0.963 and 0.802, respectively. The performance of the assembled EDLC was assessed using both cyclic voltammetry (CV) and charge-discharging responses. The absence of redox peaks is evidenced from the CV. The value of initial specific capacitance (C-spe) of the fabricated EDLC is 411.52 F g(-1). The results achieved in this study can be considered as a breakthrough in EDLC devices. (C) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available