4.4 Article

Magnetic Nanoparticle-Mediated Heating for Biomedical Applications

Journal

Publisher

ASME
DOI: 10.1115/1.4053007

Keywords

magnetic nanoparticles; SPIONs; magnetothermal; hyperthermia; cancer; cryopreservation; nanowarming; HIFU

Funding

  1. National Institutes of Health [R01EB023632, R01CA206366, R01CA243023]

Ask authors/readers for more resources

Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles, have garnered significant attention for their easy synthesis, functionalization, and control over size and shape. They have shown potential in various biomedical applications, including thermal treatments for cancer and enhancement of cryopreservation. Challenges in the use of magnetic nanoparticles in these biomedical applications are also discussed.
Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONs to customize their unique properties have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this minireview, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs are discussed, together with the nonmagnetic heating effect (i.e., high-intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available