4.7 Article

One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 424, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127585

Keywords

Arsenic; Metal removal; Wastewater; Hazardous solid waste; Johnbaumite

Funding

  1. National Natural Science Foundation of China [21836002, 22022602]
  2. National Key Research and Development Program of China [2019YFA0210400]
  3. Guangdong Special Support Program [2019TQ05L153]
  4. Guangdong Science and Tech-nology Program [2020B121201003]

Ask authors/readers for more resources

This study developed an efficient method for the one-step complete removal of arsenic from high-level arsenic-containing wastewater, using a hazardous solid waste known as arsenic-bearing gypsum. The method resulted in no secondary pollution and transformed the waste into a stable and environmentally friendly mineral. It provides a new idea for treating toxic heavy metal-containing wastewaters and hazardous solid wastes simultaneously.
High-level arsenic-containing wastewater (HAW) causes serious environmental pollution. Chemical precipitation is the most widely used technology for treating HAW. However, chemical precipitation generates huge amounts of hazardous solid wastes, which leads to secondary pollution. In this work, an efficient method, producing no secondary pollution was developed for one-step complete removal of As(V) from HAW using a hazardous solid waste namely arsenic-bearing gypsum (ABG). After the treatment, ABG was transformed into highly stable and environment-friendly mineral Johnbaumite. Meanwhile, the arsenic concentration in the wastewater decreased from 10,000 mg L-1 to 0.22 mg L-1 under optimized hydrothermal conditions (ABG dosage of 50 g L-1, solution pH of 13.5, temperature of 150 degrees C for 12 h). The mechanism mainly included the following processes: (i) The phase transformation of ABG resulted in the release of calcium and hydrogen arsenate ions in ABG, (ii) Hydrogen arsenate ions transformed into arsenate ions in alkaline environment, and (iii) Under alkaline conditions, calcium ions combined with arsenate ions to form Johnbaumite, whereas the hydrothermal conditions accelerated the crystal growth of Johnbaumite. This study provides a new idea for the synchronous treatment of toxic heavy metal-containing wastewaters and hazardous solid wastes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available