4.7 Article

Convolutional-network models to predict wall-bounded turbulence from wall quantities

Journal

JOURNAL OF FLUID MECHANICS
Volume 928, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.812

Keywords

turbulence simulation

Funding

  1. Swedish e-Science Research Centre (SeRC)
  2. G. Gustafsson Foundation
  3. Knut and Alice Wallenberg (KAW) Foundation
  4. European Research Council (ERC) [ERC-2014.AdG-669505]
  5. project ARTURO - Spanish State Research Agency [PID2019-109717RB-I00/AEI/10.13039/501100011033]

Ask authors/readers for more resources

Two convolutional neural network models were trained to predict velocity-fluctuation fields in turbulent open-channel flow, with one directly predicting fluctuations and the other reconstructing flow fields using a linear combination of orthonormal basis functions. Both models outperformed traditional methods in predicting nonlinear interactions in the flow.
Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers Re-tau = 180 and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the Re-tau = 180 dataset to initialize those of the model that is trained on the Re-tau = 550 dataset. After training the initialized model at the new Ret, our results indicate the possibility of matching the reference-model performance up to y(+) = 50, with 50% and 25% of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available