4.7 Article

Neuroprotective effects of Tiaogeng decoction against H2O2-induced oxidative injury and apoptosis in PC12 cells via Nrf2 and JNK signaling pathways

Journal

JOURNAL OF ETHNOPHARMACOLOGY
Volume 279, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2021.114379

Keywords

Tiaogeng decoction; Oxidative injury and apoptosis; PC12 cells; Nrf2 and JNK; Neurodegenerative diseases

Funding

  1. National Natural Science Foundation of China [81874482]

Ask authors/readers for more resources

TGD may attenuate oxidative injury and apoptosis via the Nrf2 and JNK signaling pathways, making it a potential therapeutic candidate for neurodegenerative diseases.
Ethnopharmacological relevance Tiaogeng decoction (TGD), a mixture of 10 traditional Chinese herbs, has been used clinically for over 30 years in treating menopause-related symptoms such as cognitive changes, mood disorders, vasomotor symptoms, and sleep disorders. These central nervous system symptoms are closely associated with declined ovarian function, which dramatically increases the risk of neurodegenerative disease. Previous studies revealed that TGD may have anti-oxidative and anti-apoptotic properties, potentially preventing neurodegenerative conditions; however, the underlying pharmacological mechanism remains unclear. Aim of the study This study aimed to examine whether TGD could activate the Nrf2 and C-Jun N-terminal kinase (JNK) signaling pathways to effectively reduce oxidative injury and apoptosis in PC12 cells and elucidate the mechanism by which this medicine may prevent neurodegenerative disease. Materials and methods PC12 cells were exposed to different concentrations of TGD (125, 250, 500 mu g/mL) and H2O2 (150 mu M). 17 beta-estradiol (0.05 mu g/mL) was used as the positive control. A cell counting kit-8 (CCK-8) and a lactate dehydrogenase (LDH) assay were used to detect cell viability and cytotoxicity, while Hoechst and flow cytometry were performed to evaluate apoptosis levels. Mitochondrial function was assessed by measuring mitochondrial membrane potential (MMP), and superoxide dismutase (SOD), and reactive oxygen species (ROS) levels were used to measure oxidative stress (OS). Western blot analysis was used to identify the levels of Nrf2, phospho-JNK (p-JNK), phospho-mitogen-activated protein kinase kinase 7 (p-MKK7), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), Caspase3 (Casp3), Caspase9 (Casp9), Bax, and Bcl-2 proteins. Moreover, JNK agonist anisomycin and Nrf2 inhibitor ML385 were used to validate pathways. Results TGD pretreatment significantly alleviated H2O2-induced cytotoxicity, apoptosis, MMP, and OS levels. H2O2 stimulated the activation of Nrf2 and JNK signaling pathways, but TGD increased the extent of Nrf2 antioxidant activation, decreased the activation of JNK, and eventually reversed the H2O2-induced protein expression of p-MKK7, Keap1, HO-1, Cleaved Caspase3 (CL-Casp3), Cleaved Caspase9 (CL-Casp9), Bax, and Bcl-2. Conclusions This study's findings suggest that TGD may attenuate oxidative injury and apoptosis via the Nrf2 and JNK signaling pathways, making it a potential therapeutic candidate for neurodegenerative diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available